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Abstract
Following previous work on Hubbard and Anderson models, we introduce
a simplified three-band Hubbard model for CuO2 planes of high-Tc

superconductors. This allows for exact evaluation of single-particle Green’s
functions within the dynamical mean field approach. Keeping information
about the lattice structure through the appropriate bare density of states, we
study the existence of magnetic solutions, and their stability with respect to
variations of the doping fraction, interaction parameters, and temperature.
Normal-state properties of known superconducting cuprates are reproduced,
and we show that the model has room for substantial enhancement of Néel
temperatures.

1. Introduction

For almost two decades now a great deal of experimental and theoretical effort has been
devoted to studying interesting properties of the so called high-Tc superconductors (HTSCs),
discovered by Bednorz and Müller [1] in 1986. Currently, the HTSCs include many families of
cuprates, such as La2−x(Ba, Sr)x CuO4+y, YBa2Cu3O6+y , Bi2Sr2CaCu2O8+y, Tl2Ba2CuO6+y ,
Nd2−x Cex CuO4, etc. These compounds present properties so diverse from conventional
superconductors that they cannot fit into the BCS scheme [2], at least with respect to the
coupling mechanism. Experimentally, their behaviour has been well determined, both in
the normal and superconducting states [3–5]. From the theoretical point of view, however,
successful results are still very limited. For instance, studies of the superconducting state have
not in general dealt with truly microscopic models. The only consensus refers to the importance
of CuO2 planar structures that are common to all of these systems. Electronic correlations on
the CuO2 planes can account for the observed magnetic properties of undoped compounds, and
holes or electrons doped into these planes are responsible for the transport properties, which
implies that they are certainly involved in the establishment of superconductivity.

It is widely accepted that a single-band effective Hubbard model is well suited to describe
the relevant physics of these CuO2 planes, after the pioneering work by Zhang and Rice [6].

0953-8984/05/508079+11$30.00 © 2005 IOP Publishing Ltd Printed in the UK 8079

http://dx.doi.org/10.1088/0953-8984/17/50/025
http://stacks.iop.org/JPhysCM/17/8079


8080 A Beatrici and M A Gusmão

Nevertheless, if one wants to study the interplay between Coulomb correlation and inter-
band charge transfer, the basic model to be employed is the so-called three-band Hubbard
model [7], which includes both charge-transfer effects due to hybridization of copper 3d and
oxygen 2p orbitals, and strong-correlation effects due to Coulomb repulsion on the copper
sites. Obviously, this defines a complex many-body problem, whose study must rely on
suitable approximation methods. Leaving aside simple mean-field theories, and given that
methods related to the Hubbard I approximation [8] yield changes to the expected nature
of the magnetically ordered state of this model [9], it is natural to look for some kind of
perturbation approach using Matsubara Green’s functions, as we are interested in finite-
temperature properties. However, the strongly correlated nature of the problem precludes
utilization of standard many-body techniques, while strong-coupling methods tend to be much
less systematic.

This research field received a new impetus with the introduction of the dynamical mean
field theory (DMFT) [10], which maps the lattice problem to a single-site problem in the
presence of a self-consistent dynamical mean field accounting for the effect of the surrounding
lattice. Although this mapping is exact only in infinite spatial dimensions, the method proved
to be a good approximation for finite dimensions. Apart from the dimensionality issue, one
should bear in mind that the effective one-site problem dealt with in DMFT is highly non-
trivial, and in general cannot be solved exactly. Early studies of the one-band Hubbard
model or the periodic Anderson model (PAM) have resorted to quantum Monte Carlo, iterated
perturbation theory (IPT) and/or the non-crossing approximation [10]. These methods tend
to be computationally demanding, and present strong applicability constraints. On the other
hand, a simplified version of the Hubbard model was proposed [11, 12] in which electrons
with a given spin orientation are frozen when determining the spectral properties of electrons
with opposite spin. This amounts to neglecting spin-flip processes when evaluating on-site
correlations, and can be shown to map into the Falicov–Kimball (FK) model [13]. Its main
interest lies in the fact that it can be exactly solved in infinite dimensions [14, 15]. A similar
simplification was applied to the PAM, also allowing for an exact solution through the DMFT
approach [16].

In the present paper, we extend this idea, introducing a simplified three-band Hubbard
model to study the electronic structure and magnetic properties of high-Tc superconductors in
their normal state. Previous results for the one-band Hubbard model [17] showed that spin-
flip processes are less important for large Coulomb repulsion. This is actually the case for
HTSCs, where the Mott gap of the copper d band is large, and the relevant physics is related to
charge-transfer excitations between copper and oxygen levels. Thus, it is reasonable to expect
that neglecting the copper-site spin-flip processes in our simplified model is not crucial, and it
allows for exact evaluation of Green’s functions within the DMFT approach. We, then, focus
on keeping the appropriate two-dimensional uncorrelated band structure for the CuO2 planes,
and determining magnetic phase diagrams with respect to both doping and the model coupling
constants.

Our results are in qualitative agreement with the observed magnetic properties, and even
quantitatively good as far the Néel temperature is concerned. In addition, we were able to
explore a wide region of the parameter space, showing that the model can yield substantially
enhanced values of this temperature, for suitable choices of the relevant coupling constants. It
is still an open question whether appropriate choices can be experimentally realized, and what
changes would correspondingly occur in the superconducting properties.

This paper is organized as follows. In section 2, we discuss the relevant interactions,
introducing the model Hamiltonian for CuO2 layers, and its simplified version. In section 3,
we review the DMFT approach for the single-band case. The method is then applied to the
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three-band model in section 4, and its main results discussed in section 5. Final discussions
and conclusions appear in section 6.

2. Interactions and Hamiltonian

Models of the HTSC are generally built upon selected fundamental interactions in the CuO2

layers, with the remaining components of the system acting as a source of electrons or holes
to this two-dimensional (2D) lattice. It is generally accepted that the physics is dominated
by Coulomb correlations at the copper sites, and by copper–oxygen hybridization (hopping).
Less important, and often neglected, are a direct oxygen–oxygen hopping, Coulomb repulsion
at the oxygen sites, inter-site Coulomb interactions, and deviations from the square-lattice
symmetry due to orthorhombic distortions.

Undoped compounds show almost full copper 3d and oxygen 2p levels, except for a single
hole per CuO2 unit. This hole resides predominantly on the copper site, yielding its magnetic
character. Taking into account all level splittings due to the crystal-field symmetry [18],
there is a single lowest-lying hole level of dx2−y2 symmetry, followed by degenerate px,y

levels. Hybridization occurs between d orbitals and either px or py along the corresponding
directions in the xy plane. One of the orthogonal combinations of these p orbitals gives
rise to a zero-width (non-hybridized) p band. The remaining two bands, keeping only the
most important contributions referred to in the previous paragraph, may be described by the
following Hamiltonian (in hole representation):

H = −t
∑

〈i j〉σ
(d†

iσ p jσ + p†
jσdiσ ) − �

∑

iσ

nd
iσ + U

∑

i

nd
i↑nd

i↓, (1)

where t is the hopping constant (hybridization), i and j refer to copper and oxygen sites,
respectively, σ =↑,↓ indicates the spin state, U stands for the Coulomb correlation, � is the
energy difference between p and d levels (bare charge-transfer gap), and we have chosen the
bare p level as the energy zero.

We now introduce the simplified Hamiltonian mentioned in section 1, which we will call
HS. Since the dynamics of holes with opposite spins will be decoupled, we drop the spin index,
referring to, e.g, the spin-up holes on copper orbitals as d holes, while the frozen (spin-down)
ones will be described by new spinless-fermion operators fi and f †

i , with the number operator
nf

i = f †
i fi . The Hamiltonian, then, reads

HS = −t
∑

〈i j〉
(d†

i p j + p†
j di) − �

∑

i

nd
i + Ef

∑

i

nf
i + U

∑

i

nd
i nf

i . (2)

Ef plays the role of a Lagrange multiplier, allowing us to fix the appropriate number of f holes.

3. DMFT—revising the one-band problem

As we mentioned before, the one-band simplified Hubbard model (FK model) has an exact
solution in the context of DMFT. Since we will now generalize this approach to the two-band
model of (2), we begin by quickly revising the main results of the single-band solution. The
FK Hamiltonian reads

HFK = −
∑

i j

ti j d
†
i d j + U

∑

i

nd
i nf

i + Ef

∑

i

nf
i . (3)

The one-particle finite-temperature Green’s function in the paramagnetic state can be written
in the general form

Gd
k(ωn) = 1

iωn − εk − �(k, ωn) + µ
, (4)
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in terms of the self-energy �(k, ωn), where the Matsubara frequencies are determined by the
temperature T through ωn = (2n + 1)πT , for integer n, and µ is the chemical potential. In
DMFT, the lattice problem is replaced by a single-site problem with hybridization to a particle
bath that accounts for the effect of the surrounding lattice. Thus, the on-site Green’s function
takes the form

Gd
ii (ωn) = 1

iωn − �(ωn) − A(ωn) + µ
, (5)

where �(ωn) is a local self-energy accounting for the on-site interactions, and A(ωn) is the
mean-field or hybridization function. Since in infinite dimensions (and, hence, in DMFT) the
lattice self-energy becomes purely local [11], we can equate the self-energies appearing in (4)
and (5). Even though this becomes an approximation at finite dimensions, it is recognized [10]
to give good results for d > 1, and can be viewed as a kind of k-space averaging of the self-
energy [19]. Assuming that the on-site Green’s functions calculated from the lattice or from
the effective problem must be equal, we obtain the self-consistency relation

Gd
ii (ωn) = 1

N

∑

k

1

[Gd
ii(ωn)]−1 + A(ωn) − εk

, (6)

where N is the number of lattice sites. The sum in k space can be replaced by an energy
integration,

Gd
ii (ωn) =

∫
ρ0(ε) dε

[Gd
ii(ωn)]−1 + A(ωn) − ε

, (7)

ρ0(ε) being the noninteracting density of states.
We still need to solve the effective single-site problem in order to obtain another relation

between Gd
ii and A. This is easily done for the FK model, yielding

Gd
ii (ωn) = 1 − 〈nf〉

iωn + µ − A(ωn)
+

〈nf 〉
iωn + µ − U − A(ωn)

. (8)

Finally, the set of self-consistent relations is complemented by equations for 〈nd〉 and 〈nf〉,
which are

〈nd〉 = T
∑

ωn

Gd
ii(ωn) eiωn0+

, (9)

and

〈nf 〉 =
{

1 + exp

[
−(Ef − µ)/T +

∑

n

Ln eiωn 0+

]}−1

, (10)

with

Ln ≡ ln[iωn + µ − A(ωn)] − ln[iωn − U + µ − A(ωn)], (11)

the latter being obtained from the exact partition function [14]. For a given particle density
n, and some definite relation between the two average occupation numbers, equations (9) and
(10) determine the chemical potential µ and the energy Ef . For instance, in the paramagnetic
case the occupation numbers satisfy the simple relationship 〈nf〉 = 〈nd〉 = n/2.

We now turn to the AF solution, still within the one-band model. We suppose that the
lattice is bipartite, and divide it into a spin-up sub-lattice A and a spin-down sub-lattice B. The
AF condition is

〈nd〉A − 〈nf〉A = 〈nf 〉B − 〈nd〉B = M, (12)
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where M stands for the sub-lattice magnetization. The local Green’s function obtained from
the effective one-site problem will keep its form, as given by (8), in each sub-lattice, i.e.,

Gd
iiα(ωn) = 1 − 〈nf 〉α

iωn + µ − Aα(ωn)
+

〈nf 〉α
iωn − U + µ − Aα(ωn)

, (13)

where α = A, B . The self-consistency condition (7) now assumes the form [10]

Gd
iiα(ωn) = ξ

ξα

∫
ρ0(ε)

ξ − ε
dε, (14)

with

ξα ≡ [Gd
iiα(ωn)]−1 + Aα(ωn), ξ ≡ √

ξAξB. (15)

The average occupation numbers are obtained from generalizations of equations (9)–(11), with
appropriate introduction of sub-lattice labels. We do not rewrite these equations here.

Since we have symmetry under spin reversal, we expect that µ and Ef , which fix the
number of particles averaged over both sub-lattices, should remain the same as determined in
the paramagnetic state. Thus, for each temperature, we first solve the paramagnetic problem
with fixed occupation numbers of both particle species to determine µ and Ef ; then, we solve
the AF problem for fixed µ and Ef to determine the new occupation numbers, which yield the
sub-lattice magnetization.

4. DMFT—the two-band problem

The procedure outlined in section 3 will now be extended to the two-band model defined by
(2). The d-hole problem is treated similarly to what was done for a single band, except that
the connection between different d orbitals occurs through an oxygen site. Thus, roughly
speaking, the hopping integral is now replaced by a product of two d–p hoppings and a bare
local p Green’s function, gp(ωn) = (iωn + µ)−1.

As we mentioned before, we will use the DMFT as an approximation, without taking the
infinite-dimension limit, but sticking to the specific two-dimensional geometry of the CuO2

planes. Then, the d–p hybridization in k space can be written as 2tγk, where

γ 2
k = 1 − εk, εk = 1

2

2∑

ν=1

cos kν . (16)

We recognize in this last equality the tight-binding energies of a square lattice of unit lattice
constant, normalized to dimensionless values in the range −1 � εk � 1.

In the paramagnetic state, the analogue of (4) is now

Gd
k(ωn) = 1

iωn + � − 4t2γ 2
k gp(ωn) − �(k, ωn) + µ

, (17)

or, using (16),

Gd
k(ωn) = 1

iωn + � − �(ωn) + µ − 4t2gp(ωn)[1 − εk]
, (18)

where we have already taken the self-energy as independent of wavevector. Likewise, the
effective single-site Green’s function, given by (5) in the one-band case, is now written as

Gd
ii (ωn) = 1

iωn + � − �(ωn) + µ − 4t2gp(ωn) − A(ωn)
, (19)
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with the resulting self-consistency condition

Gd
ii (ωn) =

∫
ρ0(ε) dε

[Gd
ii(ωn)]−1 + A(ωn) − 4t2gp(ωn)ε

. (20)

Explicit solution of the single-site problem gives Gd
ii (ωn) with the same form as in (8), except

for the energy displacement �, and an extra term −4t2gp(ωn) in both denominators.
It is, then, straightforward to generalize to the AF case. The single-site d-hole Green’s

function for each sub-lattice (α = A, B) reproduces the form of (13), again with the addition
of � − 4t2gp(ωn) to both denominators. We do not include spin polarization of the p levels,
due to their low filling in the relevant low-doping regime. The self-consistency condition can
be written as

Gd
iiα(ωn) = ξ̃

ξα

∫
ρ0(ε)

ξ̃ − ε
dε, (21)

where we keep the definitions (15), i.e., ξα ≡ [Gd
iiα(ωn)]−1 +Aα(ωn), and additionally define

ξ̃ ≡ ξpξ

4t2
= ξp

4t2

√
ξAξB, (22)

with ξp ≡ [gp(ωn)]−1 = iωn + µ. Again, we use the AF condition (12), and calculate the
occupation numbers through generalizations of equations (9)–(11), where in the latter, besides
the sub-lattice label, a term � − 4t2gp(ωn) is present in the arguments of both logarithms.

In contrast to the one-band problem, here we must take into account the occupation of
p orbitals when fixing the total hole density to evaluate the chemical potential. The average
number of p-holes per unit cell will have a contribution from the bare non-bonding p-orbital
combination, and another one obtained by summing over wavevectors the full lattice Green’s
function of the hybridizing p levels, which can be written as

Gp
k(ωn) = 1 + 2t2ξ−1

p

(
ξ−1

A + ξ−1
B

)

ξp − 4t2ξ−1 εk
. (23)

With the above set of self-consistent equations, we can study the electronic structure, i.e.,
the interacting DOS, as well as the sub-lattice magnetization, and the Néel temperature for a
variety of model parameters. The interacting densities of states for each kind of particle are
obtained from the imaginary parts of analytically continued Matubara Green’s functions to
real frequencies.

Before discussing these results, we want to stress that in the energy integrations we use
the actual square-lattice bare DOS, given by

ρ0(ε) = 4

π2
θ(1 − |ε|) 1

1 + |ε| K

(
1 − |ε|
1 + |ε|

)
, (24)

in terms of the elliptical integral

K (k) =
∫ ∞

−∞
dx

[(1 − x)(1 − k2x2)]1/2
. (25)

In the numerical calculations, we employ appropriate expansions of this elliptical integral, near
its singular middle point or away from it.

5. Results

We are now ready to discuss numerical results obtained using the set of equations derived in
section 4. Initially, we focus on the stability of AF ordering. We start with values of model
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Figure 1. Variation of the Néel temperature with Coulomb correlation, under the condition
U = 2�, for three values of the hole density: n = 1.0 (full line), 0.9 (dashed), and 1.03 (dotted).

parameters in a range often used in the literature, choosing t = 1 eV, U = 7.2t , � = 3.6t , so
that U = 2�. Then, for n = 1 (undoped case), we find an AF phase, i.e., a non-zero sub-lattice
magnetization that survives up to a Néel temperature of ∼325 K, in reasonable agreement with
experimental observations in cuprates [20].

In order to further explore the model and method, we studied TN as a function of the
Coulomb interaction U , for a few values of hole concentrations around n = 1, keeping the
condition U = 2�. Our results, plotted in figure 1, show a maximum Néel temperature for
n = 1 and U � 2.8t . This value of U , and the corresponding �, are substantially smaller than
usually taken as appropriate to the known HTSC compounds. It is interesting to notice that
the TN curves of figure 1 correctly interpolate between the strong-coupling regime, where a
Heisenberg-like behaviour is reproduced, and the weak-coupling limit, where TN vanishes for
vanishing U and �.

We generalized our study still further, by allowing both U and � to vary independently.
Figure 2 shows a three-dimensional plot of the Néel temperature as a function of both
parameters, for n = 1. We can see the line U = 2� passes near the absolute maximum,
although it is nearly perpendicular to the ‘ridge’ line of TN maxima. Then, for simplicity, we
fix the relationship U = 2� in order to study the doping dependence of TN.

By varying the number of holes, we were able to construct the phase diagrams shown in
figure 3, both for the usual U = 7.2t and for the optimum value U = 2.8t . We obtain that TN

is highest for the undoped case (n = 1), as expected. It can be seen that for U/t = 7.2 the AF
solution is stable within a narrow range around n = 1, in good agreement with experimental
observations. For U/t = 2.8, the AF phase is more robust, with higher Néel temperatures,
reaching a maximum of approximately 720 K for n = 1, and presenting an enlarged stability
region against doping. A small asymmetry is observed with respect to doping by holes (n > 1)
or electrons (n < 1). This kind of asymmetry is present in real systems, but a direct comparison
is not possible, as these two regions refer to different compounds, implying that to be realistic
we should use different parameter values on each side of the phase diagram.

We want to mention that a phase diagram bearing similar features to ours was obtained by
Maier et al [21], for nearly the same parameters as used for the inner curve of figure 3. They
also used a DMFT approach, but solved the local problem via NCA. An important difference
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Figure 2. Variation of the Néel temperature with Coulomb correlation and charge-transfer gap in
the undoped case.
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Figure 3. Phase diagram showing TN as a function of the hole concentration n, for U = 7.2t (full
line) and U = 2.8t (dashed). In both cases the condition � = U/2 holds.

between those results and ours is that they find a displaced phase diagram, with the maximum
TN occurring slightly above n = 1. The authors argue that their choice of parameters induces
a shift of the metal–insulator transition towards higher hole doping. We believe that this
is actually an artifact of their approximation (NCA). Displacement of the transition was also
obtained [9] with an extended Hubbard I approximation, and reflects a spurious shift of spectral
weight to the lowest lying bands. Here, we always obtain the maximum Néel temperature and
the metal–insulator transition at zero doping (n = 1), as can be seen for both cases shown in
figure 3.

We now turn to the one-particle densities of states. We will concentrate on the largest-TN

case, U = 2� = 2.8t , although the qualitative picture is reproduced for other parameter
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Figure 4. DOS in the AF case, for U = 2.8t , � = U/2, n = 1, and T → 0. Top panel: full-
range total DOS, including the non-bonding p-band at ω = 0. Bottom panel: low-energy sector,
explicitly showing all contributions: up-spin d (full line), down-spin d (dotted line), and p (dashed
line).

values, provided we remain in the charge-transfer case U > �. The DOS for n = 1 and
T → 0 is shown in figure 4, with a full-range plot of the total DOS in part (a), and a more
detailed view of the low-energy sector in part (b). The chemical potential falls inside the first
(charge-transfer) gap. We can see that the bands are all hybrid (mixed d and p), and strongly
spin polarized. It is important to emphasize that the effective charge-transfer gap observed in
figure 4 is lower than �, which is an excitonic effect predicted in the early days of HTSC [22],
and can be related to the so called Zhang–Rice singlet [6]. Also noticeable are the sharp
peaks due to the logarithmic van Hove singularities of ρ0(ε). As the temperature is increased
(not shown in the figure), we observe a rounding off of these peaks, together with a reduction
of the spin polarization, which completely disappears at TN. The effect of doping (at fixed
temperature) is also to reduce the spin polarization as the AF stability limit is approached,while
the inter-band gaps are narrowed, and the chemical potential moves into one of the bands at
either side of the gap, depending on whether the system is doped with electrons or holes.
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The low-energy behaviour is very similar to what would happen in a single-band model,
which in part supports the generally accepted assertion that the relevant physics of HTSC can
be obtained from a Hubbard model near half-filling, with a properly chosen effective on-site
repulsion U eff . We can see that this effective repulsion is more closely related to the charge-
transfer gap than with the Coulomb interaction itself. On the other hand, we wish to point
out that, in contrast to a half-filled single-band system, the actual lowest-lying bands are not
symmetrical, with a larger spectral weight concentrated in the occupied band. This is due
to the fact that we have hybridization between a nearly half-filled (strongly correlated) band
and an almost empty (uncorrelated) one. This constitutes an important distinction between
the low-energy physics of HTSC as described by the three-band and the single-band Hubbard
models.

6. Conclusions

In this paper, we have used the DMFT approach to study the magnetic phase diagram and DOS
of a simplified three-band Hubbard model, in which particles with a given spin orientation
have their dynamics frozen when evaluating spectral properties of particles with the opposite
spin orientation. Studying the stability of magnetic ordering against doping, in the strong-
correlation limit, and for fairly large charge-transfer gap, we were able to obtain values of the
Néel temperature in a range consistent with experimental observations for HTSC cuprates, as
well as good qualitative agreement for the behaviour of TN as a function of doping.

In order to access the model’s potentialities, we left the experimental region of coupling
constants, and freely explored the parameter space, more specifically, varying the charge-
transfer gap and the Coulomb correlation. We then showed that TN can be substantially
enhanced by reducing the correlation strength while remaining within the charge-transfer-
insulating regime (U > �). These results suggest that less strongly correlated systems, with
smaller charge-transfer gaps as compared to the HTSC cuprates, if experimentally realizable,
should show higher Néel temperatures.

Unfortunately, within the present approach it is not possible to infer what would happen
with the superconducting critical temperature Tc upon the same variation of parameters. If there
is some correlation between the values of TN and Tc, such that Tc rises in the superconducting
regime (higher doping) when TN rises in the magnetic one, we could also expect higher
temperatures for the superconducting solution.

Finally, based on our analysis of the one-particle densities of states, we wish to stress the
fact that, even though the low-energy physics is dominated by two (sub)bands separated by a
gap, the nature of these bands and, in particular, their spectral-weight asymmetry raise doubts
about the soundness of a simple mapping into an effective one-band Hubbard model.

Acknowledgment

We acknowledge support from Conselho Nacional de Desenvolvimento Cientı́fico e
Tecnológico (CNPq), Brazil.

References

[1] Bednorz J G and Müller K A 1986 Z. Phys. B 64 189
[2] Bardeen J, Cooper L N and Schrieffer J R 1957 Phys. Rev. Lett. 106 162

Bardeen J, Cooper L N and Schrieffer J R 1957 Phys. Rev. Lett. 108 1175
[3] Damascelli A, Hussain Z and Shen Z-X 2003 Rev. Mod. Phys. 75 473

http://dx.doi.org/10.1007/BF01303701
http://dx.doi.org/10.1103/RevModPhys.75.473


DMFT study of a simplified model for CuO2 planes 8089

[4] Khasanov R, Schneider T, Brütsch R, Gavillet D, Karpinski J and Kelleret H 2004 Phys. Rev. B 70 144515
[5] Pimenov A, Loidl A, Jakob G and Adrian H 2000 Phys. Rev. B 61 7039
[6] Zhang F C and Rice T M 1988 Phys. Rev. B 37 R3759
[7] Emery V J 1987 Phys. Rev. Lett. 58 2794
[8] Hubbard J 1963 Proc. R. Soc. A 276 238
[9] Beatrici A and Gusmão M A 1995 Phys. Rev. B 51 7508

[10] Georges A, Kotliar G, Krauth W and Rozemberg M J 1996 Rev. Mod. Phys. 68 13
[11] Metzner W and Vollhardt D 1989 Phys. Rev. Lett. 62 324
[12] van Dongen P G J and Vollhardt D 1990 Phys. Rev. Lett. 65 1663
[13] Falicov L M and Kimball J C 1969 Phys. Rev. Lett. 22 997
[14] Brand U and Mielsch C 1989 Z. Phys. B 75 365

Brand U and Mielsch C 1990 Z. Phys. B 79 295
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